Local Search Based on Genetic Algorithms
نویسندگان
چکیده
Genetic Algorithms have been seen as search procedures that can quickly locate high performance regions of vast and complex search spaces, but they are not well suited for fine-tuning solutions, which are very close to optimal ones. However, genetic algorithms may be specifically designed to provide an effective local search as well. In fact, several genetic algorithm models have recently been presented with this aim. In this chapter, we call these algorithms Local Genetic Algorithms. In this chapter, first, we review different instances of local genetic algorithms presented in the literature. Then, we focus on a recent proposal, the Binary-coded Local Genetic Algorithm. It is a Steady-state Genetic Algorithm that applies a crowding replacement method in order to keep, in the population, groups of chromosomes with high quality in different regions of the search space. In addition, it maintains an external solution (leader chromosome) that is crossed over with individuals of the population.These individuals are selected by using Positive AssortativeMating, which ensures that these individuals are very similar to the leader chromosome. The main objective is to orientate the search in the nearest regions to the leader chromosome. We show an empirical study comparing a Multi-start Local Search based on the binary-coded local genetic algorithmwith other instances of thismetaheuristic based on local search procedures presented in the literature. The results show that, for a wide range of problems, the multi-start local search based on the binary-coded local genetic algorithm consistently outperforms multi-start local search instances based on the other local search approaches.
منابع مشابه
A Hybrid Algorithm using Firefly, Genetic, and Local Search Algorithms
In this paper, a hybrid multi-objective algorithm consisting of features of genetic and firefly algorithms is presented. The algorithm starts with a set of fireflies (particles) that are randomly distributed in the solution space; these particles converge to the optimal solution of the problem during the evolutionary stages. Then, a local search plan is presented and implemented for searching s...
متن کاملGENETIC AND TABU SEARCH ALGORITHMS FOR THE SINGLE MACHINE SCHEDULING PROBLEM WITH SEQUENCE-DEPENDENT SET-UP TIMES AND DETERIORATING JOBS
This paper introduces the effects of job deterioration and sequence dependent set- up time in a single machine scheduling problem. The considered optimization criterion is the minimization of the makespan (Cmax). For this purpose, after formulating the mathematical model, genetic and tabu search algorithms were developed for the problem. Since population diversity is a very important issue in ...
متن کاملSolving the Ride-Sharing Problem with Non-Homogeneous Vehicles by Using an Improved Genetic Algorithm with Innovative Mutation Operators and Local Search Methods
An increase in the number of vehicles in cities leads to several problems, including air pollution, noise pollution, and congestion. To overcome these problems, we need to use new urban management methods, such as using intelligent transportation systems like ride-sharing systems. The purpose of this study is to create and implement an improved genetic algorithms model for ride-sharing with non...
متن کاملA Differential Evolution and Spatial Distribution based Local Search for Training Fuzzy Wavelet Neural Network
Abstract Many parameter-tuning algorithms have been proposed for training Fuzzy Wavelet Neural Networks (FWNNs). Absence of appropriate structure, convergence to local optima and low speed in learning algorithms are deficiencies of FWNNs in previous studies. In this paper, a Memetic Algorithm (MA) is introduced to train FWNN for addressing aforementioned learning lacks. Differential Evolution...
متن کاملA Novel Experimental Analysis of the Minimum Cost Flow Problem
In the GA approach the parameters that influence its performance include population size, crossover rate and mutation rate. Genetic algorithms are suitable for traversing large search spaces since they can do this relatively fast and because the mutation operator diverts the method away from local optima, which will tend to become more common as the search space increases in size. GA’s are base...
متن کاملTabu-KM: A Hybrid Clustering Algorithm Based on Tabu Search Approach
The clustering problem under the criterion of minimum sum of squares is a non-convex and non-linear program, which possesses many locally optimal values, resulting that its solution often falls into these trap and therefore cannot converge to global optima solution. In this paper, an efficient hybrid optimization algorithm is developed for solving this problem, called Tabu-KM. It gathers the ...
متن کامل